Tentukan Keliling Dan Luas

Sisi Alas dan Sisi Tutup Tabung

Unsur kesatu dari bangun ruang tabung adalah adanya sisi alas dan sisi tutup tabung. Sisi alas dan sisi tutup tabung terbentuk dari dua buah lingkaran yang di mana sisi alas tabung terletak pada bagian bawah tabung dan sisi tutup tabung terletak pada bagian atas tabung. Dengan kata lain, sisi alas tabung berfungsi agar tabung tidak jatuh dan sisi tutup tabung berfungsi untuk menutupi bagian tabung. Adapun pembentuk dari lingkaran, yaitu pusat lingkaran dan jari-jari lingkaran.

Unsur kedua dari tabung adalah selimut tabung. Selimut tabung adalah sisi lengkung yang letaknya berada di bagian tengah tabung. Dengan kata lain, selimut tabung terletak di antara sisi alas dan susu tutup tabung. Sementara itu, fungsi dari selimut tabung adalah untuk menghubungkan sisi alas dengan sisi tutup tabung.

Unsur bangun ruang tabung yang ketiga adalah jari-jari tabung. Jari-jari tabung yang ada di tabung merupakan jari-jari yang ada di dalam lingkaran. Lingkaran pada bangun ruang tabung terletak pada bagian alas tabung dan bagian tutup tabung. Jari-jari tabung adalah suatu jarak antara rusuk tabung dengan titik pusat lingkaran tabung.

Unsur tabung yang kelima adalah diameter tabung. Diameter tabung adalah panjang dari jari-jari tabung yang dikalikan dua. Oleh sebab itu, dapat dikatakan bahwa diameter tabung merupakan jarak dari rusuk tabuk yang melalui titik pusat lingkaran tabung. Diameter tabung letaknya sama dengan dengan jari-jari tabung, yaitu di sisi alas dan di sisi tutup tabung. Pada dasarnya, diameter tabung jarang sekali digunakan karena dalam rumus-rumus tabung yang lebih sering digunakan adalah jari-jari tabung.

Unsur tabung yang kelima adalah tinggi tabung. Tinggi tabung adalah suatu jarak antara titik pusat lingkaran yang berada di sisi tutup tabung dengan titik pusat lingkaran yang berada di sisi alas tabung.

Bangun ruang tabung memiliki beberapa sifat, yaitu:

Keliling Alas Atau Tutup Tabung

Untuk menghitung alas atau tutup tabung dapat dihitung menggunakan rumus sebagai berikut:

Bangun ruang tabung atau silinder memiliki beberapa unsur yang terdiri dari, sisi tabung, selimut tabung, jari-jari tabung, diameter tabung, dan tinggi tabung.

Luas Permukaan Tabung

Untuk menghitung luas permukaan tabung dapat dihitung dengan cara menjumlahkan luas ketiga sisinya.

Luas permukaan tabung = Luas alas + Luas tutup + Luas selimut tabung

Luas selimut tabung = 2 x đťś‹ x r x t

Tidak Ada Titik Sudut

Sifat ketiga dari bangun ruang tabung adalah tidak ada titik sudut. Seperti yang kita tahu bahwa bangun ruang dapat terbentuk atau terbangun dari dua buah lingkaran yang terletak pada bagian alas dan tutup tabung yang dipisahkan oleh selimut tabung. Oleh sebab itu, sama halnya dengan lingkaran yang tidak memiliki titik sudut, sehingga bangun ruang juga tidak memiliki titik sudut.

Tidak adanya titik sudut pada tabung bisa dibilang berbeda dengan bangun ruang lainnya yang di mana memiliki titik sudut yang cukup banyak, seperti kubus, balok, dan lain-lain. Meskipun tidak memiliki titik sudut, tetapi bangun ruang tabung masih dapat terlihat dalam bentuk 3 dimensi karena memiliki pemisah lingkaran alas dan tutup.

Bangun ruang tabung merupakan sebuah bangun ruang yang dapat terbentuk dari gabungan antara bangun datar persegi panjang dan bangun datar lingkaran. Maka dari itu, jaring-jaring dari tabung terdiri dari persegi panjang dan dua buah lingkaran (alas dan tutup). Tabung yang terbentuk dari dua buah lingkaran, maka ketika menghitung volume dan keliling tabung tidak lepas dari rumus lingkaran.

Bangun ruang tabung ini pada dasarnya sering kali kita jumpai di rumah, warung, rumah sakit, dan lain-lain. Oleh sebab itu, bisa dikatakan bahwa bangun ruang tabung sudah tak asing lagi bagi setiap manusia.

Sumber: Dari berbagai macam sumber

Unsur-Unsur Lingkaran

Titik tetap yang menjadi pusat dari semua titik pada lingkaran, yaitu O.

Jarak dari pusat lingkaran ke setiap titik pada lingkaran, yaitu AO, OB, atau OC.

Jarak terpanjang yang menghubungkan dua titik pada lingkaran melalui pusat, yaitu AB.

Bagian dari keliling lingkaran yang terletak antara dua titik pada lingkaran, yaitu BC.

Garis yang menghubungkan dua titik pada lingkaran tanpa melewati pusat, yaitu AC.

Garis tegak lurus dari pusat lingkaran ke tali busur, yaitu OD dalam segitiga OAC.

Daerah dalam lingkaran yang dibatasi oleh busur dan tali busur.

Daerah yang dibatasi oleh dua jari-jari dan sebuah tali busur, yaitu BOC.

Adanya Lingkaran pada Bagian Alas dan Tutup Tabung

Ciri ketiga dari bangun ruang tabung adalah adanya alas dan tutup pada tabung yang berbentuk lingkarang. Pada bagian sisi alas dan sisi tutup tabung berupa lingkaran. Uniknya lagi, lingkaran yang dijadikan alas dan tutup tabung pasti memiliki ukuran yang sama satu sama lain. Oleh karena itu, ketika menghitung keliling lingkaran, kita hanya menghitung salah satu lingkaran saja dan tak perlu menghitung kedua lingkaran alas dan tutup tabung.

Tidak hanya itu saja, bagian alas dan tutup tabung ini menjadi tanda bahwa dalam bangun ruang tabung ini dibentuk dengan dua lingkaran. Tanpa adanya kedua lingkaran itu, suatu bangun ruang tabung tidak akan terbentuk. Meskipun lingkaran berperan penting dalam terbentuknya bangun ruang tabung, tetapi tanpa adanya persegi panjang (sebagai selimut tabung) tabung tidak akan terbentuk.

Pada dasarnya, setiap bangun ruang pasti memiliki jaring-jaring. Begitu pun dengan bangun ruang tabung juga memiliki jaring-jaring yang terdiri dari dua buah lingkaran dan satu buah persegi panjang. Berikut ini contoh jaring-jaring bangun ruang tabung.

Bangun ruang tabung memiliki dua jenis, yaitu tabung terbuka dan tabung tertutup.

Tabung terbuka adalah jenis tabung yang di mana salah satu sisi tutupnya atau sisi alasnya terbuka atau sisi alas dan sisi tutupnya dua-duanya terbuka.

Tabung tertutup adalah jenis tabung yang di mana seluruh bagian dan sisinya semuanya tertutup.

Volume pada bangun ruang tabung dapat dihitung dengan rumus sebagai berikut

V = Luas alas x tinggi

Keliling Alas Atau Tutup Tabung

Untuk menghitung alas atau tutup tabung dapat dihitung menggunakan rumus sebagai berikut:

Bangun ruang tabung atau silinder memiliki beberapa unsur yang terdiri dari, sisi tabung, selimut tabung, jari-jari tabung, diameter tabung, dan tinggi tabung.

Rekomendasi Buku & Artikel Terkait

Pada postingan sebelumnya telah dibahas tentang Algoritma, Flowchart dan Pemrograman Studi Kasus Konversi Suhu Celcius ke Fahrenheit. Pada postingan kali ini akan dilanjutkan dengan pembahasan Algoritma, Flowchart dan Pemrograman untuk Menghitung Luas Permukaan, Keliling dan Volume Kubus. Kubus adalah salah satu bentuk dari Bangun Ruang. Jika kalian pernah belajar matematika di sekolah seharusnya kalian sudah tahu apa itu bangun ruang.

Berikut ini adalah definisi atau pengertian dari Kubus:

Untuk mempelajari Algoritma, Flowchart dan Pemrograman Menghitung Luas Permukaan, Keliling dan Volume Kubus, simak pembahasan berikut ini.

Sebelum membahas Algoritma, Flowchart dan Pemrogramannya, kalian harus mengetahui terlebih dahulu rumus luas permukaan kubus, rumus keliling kubus dan rumus volume kubus.

Sisi Alas dan Sisi Tutup Tabung

Unsur kesatu dari bangun ruang tabung adalah adanya sisi alas dan sisi tutup tabung. Sisi alas dan sisi tutup tabung terbentuk dari dua buah lingkaran yang di mana sisi alas tabung terletak pada bagian bawah tabung dan sisi tutup tabung terletak pada bagian atas tabung. Dengan kata lain, sisi alas tabung berfungsi agar tabung tidak jatuh dan sisi tutup tabung berfungsi untuk menutupi bagian tabung. Adapun pembentuk dari lingkaran, yaitu pusat lingkaran dan jari-jari lingkaran.

Unsur kedua dari tabung adalah selimut tabung. Selimut tabung adalah sisi lengkung yang letaknya berada di bagian tengah tabung. Dengan kata lain, selimut tabung terletak di antara sisi alas dan susu tutup tabung. Sementara itu, fungsi dari selimut tabung adalah untuk menghubungkan sisi alas dengan sisi tutup tabung.

Unsur bangun ruang tabung yang ketiga adalah jari-jari tabung. Jari-jari tabung yang ada di tabung merupakan jari-jari yang ada di dalam lingkaran. Lingkaran pada bangun ruang tabung terletak pada bagian alas tabung dan bagian tutup tabung. Jari-jari tabung adalah suatu jarak antara rusuk tabung dengan titik pusat lingkaran tabung.

Unsur tabung yang kelima adalah diameter tabung. Diameter tabung adalah panjang dari jari-jari tabung yang dikalikan dua. Oleh sebab itu, dapat dikatakan bahwa diameter tabung merupakan jarak dari rusuk tabuk yang melalui titik pusat lingkaran tabung. Diameter tabung letaknya sama dengan dengan jari-jari tabung, yaitu di sisi alas dan di sisi tutup tabung. Pada dasarnya, diameter tabung jarang sekali digunakan karena dalam rumus-rumus tabung yang lebih sering digunakan adalah jari-jari tabung.

Unsur tabung yang kelima adalah tinggi tabung. Tinggi tabung adalah suatu jarak antara titik pusat lingkaran yang berada di sisi tutup tabung dengan titik pusat lingkaran yang berada di sisi alas tabung.

Bangun ruang tabung memiliki beberapa sifat, yaitu:

Contoh Soal Perhitungan Keliling Lingkaran

Melansir smpn3payakumbuh.sch.id, berikut contoh soal dan pembahasan keliling lingkaran:

Hitunglah keliling lingkaran yang mempunyai diameter 15 cm dengan π = 3,14.

Keliling = πd = 3,14 x 15 cm = 47,1 cm.

Hitunglah diameter lingkaran yang mempunyai keliling 25,12 cm dan π = 3,14.

Jadi, diameter lingkaran tersebut adalah 8 cm.

Tentukan keliling lingkaran yang berdiameter 21 cm dan π = 22/7.

Keliling = πd = 22/7 x 21 cm = 22 x 3 cm = 66 cm.

Tentukan keliling lingkaran yang berdiameter 35 cm dan π = 22/7.

Keliling = πd = 22/7 x 35 cm = 22 x 5 cm = 110 cm.

Tentukan keliling lingkaran yang berdiameter 49 cm dan π = 22/7.

Keliling = πd = 22/7 x 49 cm = 22 x 7 cm = 154 cm.

Tentukan keliling lingkaran yang berdiameter 38,5 cm dan π = 22/7/

Keliling = πd = 22/7 x 38,5 cm = 22 x 5,5 cm = 121 cm.

Tentukan keliling lingkaran yang panjang jari-jarinya 10 cm dan π = 3,14.

Keliling = 2Ď€r = 2 x 3,14 x 10 cm = 62,8 cm.

Tentukan keliling lingkaran yang panjang jari-jarinya 15 cm dan π = 3,14.

Keliling = 2Ď€r = 2 x 3,14 x 15 cm = 94,2 cm.

Tentukan keliling lingkaran yang panjang jari-jarinya 36 cm dan π = 3,14.

Keliling = 2Ď€r = 2 x 3,14 x 36 cm = 226,08 cm.

Tentukan keliling lingkaran yang panjang jari-jarinya 15,5 cm dan π = 3,14.

Keliling = 2Ď€r = 2 x 3,14 x 15,5 cm = 97,34 cm.

Diameter mata uang koin lima ratus rupiah adalah 15 mm. Hitunglah kelilingnya.

Keliling = 2Ď€r = 2 x 3,14 x 15 mm = 94,2 mm.

Diameter sebuah roda mobil adalah 42 cm. Hitunglah keliling roda tersebut.

Keliling = πd = 22/7 x 42 cm = 22 x 6 cm = 132 cm.

Rumus keliling lingkaran digunakan untuk menghitung panjang antara titik A di garis keliling lingkaran ke titik itu kembali. Begini cara menghitungnya dengan rumus keliling lingkaran.

Dikutip dari Pasti Bisa Matematika untuk SD/Mi Kelas VI oleh Tim Tunas Karya Guru, kamu perlu mengenal unsur lingkaran untuk menghitung keliling lingkaran. Unsur lingkaran yang digunakan dalam rumus keliling lingkaran yaitu jari-jari atau radius (r) dan diameter atau garis tengah (d).

Unsur lingkaran di antaranya:

SCROLL TO CONTINUE WITH CONTENT

- Titik pusat (titik O), yaitu titik yang terletak di tengah-tengah lingkaran- Jari-jari atau radius (r), yaitu garis dari titik pusat lingkaran ke lengkungan lingkaran- Diameter (garis tengah), yaitu garis lurus yang menghubungkan dua titik pada lengkungan lingkaran dan melalui titik pusat- Busur, yaitu garis lengkung yang terletak pada lengkungan lingkaran dan menghubungkan dua titik sebarang pada lengkungan tersebut- Tali busur, yaitu garis lurus dalam lingkaran yang menghubungkan dua titik pada lengkungan lingkaran- Juring, yaitu luas daerah dalam lingkaran yang dibatasi dua buah jari-jari lingkaran dan sebuah busur yang diapit kedua jari-jari lingkaran tersebut